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The maxima and first-passage-time statistics of Wiener-Einstein processes 
are evaluated analytically in one, two, and three dimensions. We show 
that the mean square maximum displacement has the same time dependence 
as the mean square displacement, i.e., it grows linearly with time. The 
ratio of the mean square maximum to the mean square displacement is 
shown to decrease with increasing dimensionality. We also calculate the 
mean first passage time for the process to attain a given absolute displace- 
ment and find that it grows as the square of the displacement and is inde- 
pendent o f  the dimensionality of  the process. In addition, we evaluate the 
dispersion of maxima and of first passage times and discuss their dependence 
on dimensionality. 

KEY WORDS: Maxima statistics; first-passage-time statistics; Wiener- 
Einstein processes; random walks. 

1. I N T R O D U C T I O N  

The theory  o f  extremes is the  s tudy  o f  the d i s t r ibu t ion  o f  the  ext reme values 
( max ima  o r  min ima)  o f  a r a n d o m  var iable  within a given t ime interval .  The  
d i s t r ibu t ion  o f  ext reme values is closely re la ted  to  the  d i s t r ibu t ion  o f  first 
passage  t imes o f  the  r a n d o m  var iable  to a prescr ibed  bounda ry .  

M o s t  previous  work  on the theo ry  o f  extremes deals  wi th  i ndependen t  
r a n d o m  variables .  (1) The  ca lcula t ion  o f  ex t reme value d is t r ibut ions  and  the i r  

m omen t s  is much  more  difficult for  M a r k o v  dependen t  var iables  than  for  
i ndependen t  variables .  Some aspects  o f  the  behav io r  o f  extreme value dis- 
t r ibu t ions  for  s ingle-var iable  M a r k o v  processes descr ibed  by  a F o k k e r -  
P lanck  equa t ion  have been invest igated and  some asympto t i c  results  have 

been  ob ta ined .  ~2,a~ 
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In this paper we examine the extrema statistics of a Wiener-Einstein 
(WE) process in one, two, and three dimensions. We chose this process for 
a variety of reasons. The WE process is one of the standard stochastic proc- 
esses which have been studied extensively3 4) It finds application in prob- 
lems such as heat conduction, diffusion, and polymer statistics. The simplicity 
of  the WE process allows one to obtain analytic results for first-passage-time 
and maxima statistics without recourse to extensive numerical computations. 
Also, the discrete analog of the WE processes, i.e., the symmetric, nearest 
neighbor random walk, has been used to qualitatively and quantitatively 
model a variety of  physical processes in crystals. Some examples include 
transport properties of  crystallineS5> and amorphous ~6~ materials and quench- 
ing of elementary excitations in regular lattices. ~6-9~ The behavior of the 
extrema of a WE process can thus yield information about transport processes 
including diffusion and also about trapping behavior. It should be noted 
that most previous work on extrema of Markov processes is based on a 
separation of eigenvalues, which does not occur in the WE process, so that 
the results found there are not directly applicable here3 T M  

One of  the quantities that we calculate in later sections is the mean 
square maximum excursion of  the process from the point of origin as a 
function of time. Since the WE process does not include any systematic 
drift contributions, one might expect that this mean square maximum and 
the mean square displacement from the origin have the same time depen- 
dence. We will show that this is indeed the case, i.e., that the mean square 
maximum of a WE process grows linearly with time, and explicitly evaluate 
the constant of proportionality in one, two, and three dimensions. Our 
three-dimensional results agree with those of Hollingsworth and with those 
of Weidmann e t  al. ~11~ Our conclusion is crucially dependent on the absence 
of a restoring force toward a given point. We will show elsewhere that in 
the presence of  such a restoring force, as, for example, in an Ornstein- 
Uhlenbeck process, ~3> the time dependences of  the mean square displacement 
and of the mean square maximum displacement are drastically different, t12~ 

Another quantity that we calculate for the WE process is the mean first 
passage time for the process to attain a given displacement from the origin. 
We will show that the mean first passage time grows as the square of  the 
displacement, a result which is in accord with the linear growth of  the 
mean square maximum displacement with time and is also a consequence 
of the absence of  a drift term. ~12) 

To calculate the behavior of extrema we must first obtain expressions 
for the cumulative distribution function for the extrema. This distribution 
function is defined precisely in Section 2. It is there shown that properties 

2 See Ref. 10 for a different approach. 
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such as the mean first passage time for a stochastic process to attain a given 
value and the mean maximum of a process within a given time interval are 
respectively temporal and spatial moments of this cumulative distribution. 
In Section 3 we calculate the extrema distribution function and its moments 
for WE processes in one, two, and three dimensions. We conclude with a 
discussion of our results in Section 4. 

2. REVIEW OF THE THEORY OF EXTREMA 

Let the displacement of a process from the origin at time t be denoted 
by the random variable X(t) .  We define f i x ,  t) dx as the probability that 
X( t )  lies within (x, x + dx) without ever having crossed _+ ~ in time (0, t), 
given X(0) = 0. The maximum absolute displacement in the time interval 
(0, t) is 

Z ( t )  - max{]X0-)[, 0 ~< �9 ~< t} (2.1) 

The cumulative distribution function F(~, t) is given by 

f F(~, t) = dx f ( x ,  t) (2.2) 

and is the probability that Z ( t )  < ~. The first passage time T(~) is defined 
as the time at which the random variable X( t )  first crosses + ~, i.e., 

T(~) - min{~-[X(T) = + ~} (2.3) 

The first passage time and the cumulative distribution function are related by 

F(~, t) = Prob{T(~) > t[X(0) = 0} (2.4) 

The kth moments of  the distributions of Z ( t )  and T(~) are then respectively 
given by 

Zk(t)  = k d~ ~k-l[1 - F(~, t)] (2.5) 

and 

~0 ~176 Tk(~) = k dt t~-lF(~,  t) (2.6) 

3. M A X I M A  A N D  F IRST-PASSAGE-TIME STATISTICS 

3.1. One Dimension 
The one-dimensional WE process is defined by the equation 

Op(x, t)/Ot = D O2p(x, t ) /ax 2 (3.1) 
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where p(x, t) dx is the probabil i ty that  J((t) lies within (x, x + dx) given 
X(0) = 0. The distribution f ( x ,  t) for  the probabil i ty that  X( t )  lies within 
(x, x + dx) without  ever having crossed + ~ satisfies Eq. (3.1) with absorb- 
ing boundaries  at x = _+ ~.(3> The solution for f ( x ,  t) with the initial condi- 
t i o n f ( x ,  0) = 3(x) is easily obtained to be (1~ 

f ( x ,  ') = ~ l~cos[ (2n+l)zrX]exp[D(2n~-- -~21)2z :2 '  L -2( [ (3.2) 

The cumulative distribution function F(~, t) of  (2.2) is given by 

f_" ~ (- 1)" [D(2n~21)2~:t ] 
F(~, t) = f ( x ,  t) dx = 2 (2n + 1)~r/2 exp --  

n = 0  

(3.3) 

We first Laplace- t ransform Eq. (3.3), and sum the resulting series by contour  
integration to obtain 

ff(~, ,) = (11,){1 - sech[~(,/D)l/2]} (3.4) 

Using Eqs. (2.5) and (3.4) gives Z2(~) = 4DG/E 2, where G = 0.915965594... 
is the Catalan number.  (13> The inverse Laplace t ransform of  Z2(e) yields 

Z2(t) = 4DGt = 3.6638...Dt (3.5) 

A similar calculation for  the maximum displacement yields Z~(t) = (~rDt) ~:2, 
which leads to the dispersion y = ([Z2(t) - Z12(t)]/Z12(t)} ~12 = 0.4077 .... 

Let  us examine the first-passage-time moments.  After  some algebra, 
Eqs. (2.6) and (3.4) yield 

and 

TI(~) = ~2/2D (3.6) 

T2(~) = ~4/D2 (3.7) 

The dispersion is a - {[T2(~) - T12(~)]/T12(~)} 112 = (2/3) 1/2. 
In Appendix A we obtain the corresponding results for  a discrete, one- 

dimensional,  symmetric r andom walk. 

3.2. T w o  Dimensions  

The W E  process in two dimensions is 

[@ @1 
~t 2 [~x 2 + ~y2j 

(3.8) 
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In polar coordinates (r, 0), the distribution function is independent of 0 
for 0-independent initial conditions. Thus, Eq. (3.8) reduces to 

~P(r,~t t) ~D I~r 2~2 rl 0 ]p = ~ + ~r] ('r t) (3.9) 

where p(x, y, t) dx dy = 2~rP(r, t)r dr. The distribution function f(r, t), 
which represents the probability density that the process is within dr of r 
at time t without ever having crossed r = g, satisfies Eq. (3.9) with a circular 
absorbing boundary at r = g. A solution that satisfies these conditions and 
obeys the initial conditionf(r ,  0) = 8(r)/r can easily be shown to be 

~2[jl(Xorn)]2 Jo exp Dx~mt (3.10) 
m=0 2g 2 

where Jo and J1 are the zeroth and first Bessel functions and Xor~ is the ruth 
root of the Bessel function Jo. The cumulative distribution function is given 

F(~, t) = rf(r, t) dr 

by(l~) 

~-'~~ 2 exp Dxgmt (3.11) 
dZ'=o Xo.J~Xo~) 2~ ~ 

We Laplace-transform (3.11) and sum the resulting series using contour 
integration to obtain 

g(~,  , )  = 1 1 
e elo(~(2e/D) l'z) (3.12) 

where I0 is the zeroth Bessel function of imaginary argument. We now pro- 
ceed to calculate the moments of the distribution of maxima. Using Eq. 
(3.12) in the Laplace transform of (2.5) and inverse-transforming, we obtain 

I- c = xdxq 
Z 2 ( t )  = [DJo / o ~ ] t  (3.13) 

We have evaluated the integral in (3.13) numerically. The result is 

Zz(t) = 3.0688...Dt (3.14) 

We similarly find for the first moment of the maximum displacement Z~(t) = 
1.6622...(Dt)~/L The dispersion in this case is y = 0.3327 .... 

To obtain the first-passage-time moments we proceed as in one dimen- 
sion. From Eqs. (3.12) and (2.6) we obtain 

Tx(~) = ~2/2D (3.15) 
and 

T2(~) = 3~'[8D 2 (3.16) 

Hence the dispersion in two dimensions is ~ = 1]V'2. 
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3.3. Three  Dimensions 

A WE process in three dimensions is given by the equation 

op D [a2p o2p O2p] 
07 = Y LOx 2 + ey -'--g -e Oz2j (3.17) 

The equation of evolution of  the probability distribution in spherical polar 
coordinates (r, 0, ~b) is 

OP D 02(rP) 
~--7 = 3r ~r z (3.18) 

where we have exploited the symmetry of the problem to set the derivatives 
with respect to 0 and 9~ equal to zero. Once again the distribution function 
f ( r ,  t) defined earlier is the solution to a boundary value problem for Eq. 
(3.18) with an absorbing boundary at r = ~:. The solution for the initial 
condi t ionf(r ,  0) = 3(r)/r 2 is 

~ 2 m ~ -  (3.19) sin(mrrr [ ~) Dm2rrz t 
f ( r ,  t) = ~2 r exp 3~ ~ 

r a = l  

as also found by Weidmann et a l / m  The Laplace transform of the cumulative 
distribution function corresponding to (3.19) can be summed exactly and 
used in Eq. (2.5) to yield m~ 

Zz( t )  --- 2.8048...Dt (3.20) 

For  the first moment we find Z~(t)  = (~raDt/12) ~12, so that the dispersion is 
~, = 0.2924 .... 

The moments of the first-passage-time distribution are given by 

TI(~) = ~2/2D (3.21) 

and 

Tz(~) = 7~4/20D 2 

The dispersion in three dimensions is thus e = (2/5) 1/2. 

(3.22) 

4. D I S C U S S I O N  

Our main results are summarized in Table I. The trends that can be 
seen from the table are the following: 

(a) The mean square maximum displacement Z2(t)  approaches the 
mean square displacement X2(t) = 2Dt  as the dimensionality of the system 
increases. To further confirm this statement, we have computed the ratio 
Zz( t ) /X2( t )  in four dimensions and find that it is equal to 1.33 .... The reason 
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Table h Extrema for the Wiener-Einstein Process a 

Dimension Z2/X2 [(2"2 - Zz2)/Z12] 112 T1 [(T2 - T12)/T121 lt2 

1 1.8319 0.4077 ~2/20 (2/3) 1/2 
2 1.5344 0.3327 ~212D (2/4) 1/2 
3 1.4024 0.2924 ~/2D (2/5) 112 

a X2(t) is the mean square displacement and is equal to 2Dt. 

for this monotonic behavior is that as dimensionality increases, a WE proc- 
ess is less likely to return to a previously covered spatial region, so that the 
displacement and the maximum displacement are more likely to coincide. 

(b) The dispersion in the maximum displacement of  WE processes is 
finite for all dimensions. This behavior is quite different from that of  a proc- 
ess with a restoring force toward a point, e.g., an Ornstein-Uhlenbeck 
process, since in the latter this dispersion vanishes at long times. ~3~ The 
decrease in the dispersion of  the maximum displacement with increasing 
dimensionality is again due to the fact that the WE process is less likely to 
revisit previously visited regions. 

(c) The mean first passage time to a distance ~ from the origin is the 
same in one, two, and three dimensions. In Appendix B we use a hierarchy 
of differential equations obeyed by the first-passage-time moments to arrive 
at the remarkable result that the mean first passage time is in fac t  the same in 
all dimensions. It should be noted that the first passage times considered here 
are different from those of  Montroll and Weiss. (9~ They calculate first passage 
times to one or more lattice sites that do not enclose the origin, while we 
consider first passage to a surface that completely surrounds the origin of  
the WE process. 

(d) The dispersion in the first passage time to a prescribed boundary is 
finite in all dimensions, as shown in Table I for one, two, and three dimen- 
sions and in the Appendix for all dimensions. The dispersion decreases 
slowly with dimensionality. We note that this result persists even when there 
is a restoring force toward a point. (8~ 

A P P E N D I X  A 

The discrete, one-dimensional, symmetric random walk problem is 
defined by the difference equation ~8~ 

P~+I(I) = �89 - 1) + 1',(1 + I)] (A1) 

where P~(I) is the probability of  occupation of  site l at the nth step. The 
distribution f~(l), which is the probability that the walker is at site l on the 
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nth step without ever having crossed _+ s, is obtained by solving this difference 
equation with absorbing boundaries at l = + s. (3~ The cumulative distribu- 
tion function is the sum of f . ( l )  over all sites within the boundaries, i.e., 

8 - - 1  

F.(s) = ~ f~(l) (A2) 
l =  - - s + l  

Let Q(s, z) be the generating function for F~(s), i.e., 

Q(s, z) = ~ z"F.(s) (A3) 
r ~ = 0  

This generating function can be related to that of  a perfect ring of 2s 
sites, (8,~~ with the result 

1 (1 2 ~ . ]  (A4) 
Q(s,z) = 1 - z 1 + x 2~] 

where x = [1 - (1 - z2)l/2]/z. 
The moments of  the distribution of  absolute maxima can be obtained 

f rom the generating function (A4) via the relation 

Zk.. = k ~ s~-l[1 - F.(s)l (A5) 
S = 0  

Consider Z2,n, the mean of the square of  the maximum displacement within 
(0, n). For  this purpose we define a generating function Z2,~ as 

Z2,~ = ~ z~Z2,n (A6) 
r~=0  

Substituting Eq. (A4) in (A5) with k = 2 gives 

1 s__~ ~ 2x s (A7) 
- -  _ S x 2 S  Z2,~ 1 z = "1 + 

A straightforward application of  the Euler-McLaurin formula ~15~ to Eq. 

(A7) yields 

Z2,~ = 1 - z (log x) 2 12 + "'" (AS) 

where G is the Catalan number. By construction, the quantity Z2,~ is the 
coefficient of  z ~ in the expansion of Z~,~ in a power series in z. An expansion 
of the right-hand side of  (A8) in powers of  z valid for all n is very cumber- 
some, but an elegant asymptotic expansion can be obtained for large n by 
using a Tauberian theorem51~ The result is 

Z2,~ ~ 2Gn (A9) 
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A completely analogous calculation can be done to obtain Zz,. ,  the mean 
of the maximum displacement. The asymptotic result is ZI , .  ~ (zrn/2) lz2. 
The dispersion in the maximum displacement is then ~ = 0.4077 .... 

We now examine the first-passage-time moments. From the relation 

and Eq. (A3) we obtain 

T~(s) = k ~ nk-IF.(s) (AIO) 
r~=O 

T~(s) = lim Q(s, z) (A11) 
Z-'*I  

T2(s) = lira SO(s' z) (A12) 
z-*l ~z 

Using the formulas in Eq. (15) of Ref. (8), we can expand Q(s, z) in a power 
series in (1 - z). Substituting this series into (A1 l) and (A12) results in 

T l ( s )  = s 2 (A13) 
and 

r~(s) = ~ s ~ ( s  ~ - l )  (A14) 

The dispersion in one dimension is ~ ~ (2/3) ~t2 for large s. 
The continuum results (3.5)-(3.7) for the temporal and spatial moments 

are identical to the corresponding discrete results obtained above if one 
uses the relation D = lim~,~0 a2/2-c, where a is the step size and ~ is the time 
between steps. 

We note that formulas for the cumulative distribution function (A2) 
and for the first-passage-time moments (A10) have been given by Spitzer (~7~ 
for a general one-dimensional random walk with finite variance. 

In two and three dimensions the extrema for a discrete random walk 
problem are difficult to obtain, for two reasons. First, no closed, analytic 
expressions exist for the lattice Green's functions that one needs to solve the 
extrema problem. Second, the boundary value problem obtained by defining 
an appropriate lattice analog of a sphere leads to absurdly difficult mathe- 
matics. On the other hand, we expect the extrema statistics of the discrete 
problem to be well represented by those of the corresponding continuum 
process for long times and large distances. 

A P P E N D I X  B 

For  spherically symmetric initial conditions the WE process in d dimen- 
sions is 

~P(r, t[ro) D 1 ~ a 1 a 
Ot - d r a _ l ~ r  - ~P(r ,  tlro) (B1) 
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[cf. Eqs. (3.1), (3.9), and (3.18) for d = 1, 2, and 3, respectively], where we 
have indicated the initial position ro explicitly. Since the solution of (B1) is 
a function only of (r - ro), we can write (B1) as a "backward equation, ' '(~ 
i.e., 

.Oe(r, tlro) _ D 1 ~ r~ -1 ~--~-P(r, tlro) (B2) 
0t d r~ -1 ~ro ~ro 

From this equation we can obtain a hierarchy of equations for the first- 
passage-time moments by multiplying by t ~ and. by r a-~ and integrating 
over t and over the position coordinate r. as'19~ The result is 

D 1 0 r~_ z 
d rg -~ 0ro Trro Z~(r = -nZ~- l (~ lro)  (B3) 

where To(r - 1 and where we have explicitly indicated the initial position 
ro in the first-passage-time moments. The boundary conditions for (B3) 
w i thn> t  l a r e  

T,(~ I + ~) = 0 for d = 1 (B4a) 

T,(~[~) = 0 } for d t> 2 (B4b) 
T~(~]0) finite 

The integration of (B3) with n = 1 and with the boundary conditions (B4) 
is straightforward and yields 

~2 r~o (BS) 
Z~(~lr~ = 2D 2 0  

for all dimensions. This reduces to the results in the text when ro = 0. 
Inserting (B5) into the right side of (B3) for n = 2 and integrating gives 

~ [d + 4'~ (B6) 
T2(KI0) = ~ \d  + 2] 

which reduces to the results in the text when d = 1, 2, and 3. The dispersion 
obtained from (B6) and (B5) is 

[ r ~ -  r ~ , ~  [ 2 ~ '~  
~r= i ~ '1 = i~] (B7) 
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